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Mass diffusion of diatomic fluids in random micropore spaces using equilibrium molecular dynamics
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An equilibrium-molecular-dynamics study of diffusion of a heteronuclear diatomic fluid in random
pore systems is reported. The pore space is generated by the use of a simple percolation technique on a
tessellation of three-dimensional space with periodic boundary conditions. Simulations using the
RATTLE algorithm [H. C. Andersen, J. Comput. Phys. 52, 24 (1983)] at constant temperature are per-
formed on the percolating cluster only where the substrate atoms are explicitly represented and the
substrate-fluid and fluid-fluid interactions are modeled using Lennard-Jones potentials. Using this tech-
nique, results are presented for a heteronuclear diatomic molecule (CO-like) within a graphitelike system
for porosities between the percolation threshold and $=0.99, and over the temperature range of 7 =100
K to T=1500 K at atmospheric pressure. The results, which include mean-square-displacement and
velocity-autocorrelation functions (VACF’s), indicate once again that mass diffusion within porous
media is fundamentally different from that in the bulk phase. The degree of anomalous behavior tends to
decrease with temperature and porosity. Although this is the case, the mean-square-displacement ex-
ponent in the long-time limit for the lower porosities (¢ =0.312 and ¢=0.4) increases with temperature
to a limiting value much less than one in the vicinity of T=300 K. Trends in the VACF’s seen here
have been reported in past Lorentz gas simulation studies. Effective diffusion coefficients for our gas-in-
pore system were calculated from the VACF’s—these appear to vary exponentially with porosity and in-
verse temperature. This temperature variation is similar to that of a liquid in the bulk phase and hence
brings into doubt the use of a temperature-independent tortuosity that relates the diffusion coefficient of
a gas in the bulk phase to that within porous media.
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I. INTRODUCTION

Recently we reported on an equilibrium-molecular-
dynamics (EMD) technique for the study of mass
diffusion of atomic fluids within porous media [1]. Re-
sults were presented for argon within a completely ran-
dom graphite porous medium at a temperature of 140 K
and fluid density of 3.5 kgm ~3 for the porosities of 0.312,
0.4, 0.6, and 0.8 and the bulk phase. The results clearly
indicated that mass diffusion for such a system was fun-
damentally different from that in the bulk phase for the
simulated conditions. It was shown that the velocity au-
tocorrection functions (VACF’s) possessed long negative
tails and contained oscillatory components, the mean-
square displacements were nonlinear, and the memory
kernel of the VACF’s decayed slowly. The level of such
non-Markovian behavior decreased as the porosity ap-
proached 1.

This paper describes the extension of the EMD tech-
nique of Ref. [1] to diatomic fluids in particular and
molecular fluids in general. The RATTLE algorithm of
Andersen [2] was used in conjunction with a Nosé-
Hoover (NH) thermostat [3] to study the diffusion of a
heteronuclear diatomic molecule (CO-like) within a com-
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pletely random graphitelike porous medium at atmos-
pheric pressure. Results are presented for porosities of
0.312, 0.4, 0.6, and 0.8 at the temperatures of 100, 200,
300, 500, 700, 1100, 1300, and 1500 K and for porosities
of 0.312, 0.4, 0.6, 0.8, 0.95, and 0.99 at a temperature of
900 K. The fluid molecules were represented by a two-
center Lennard-Jones potential while the porous solid
was the same as in Ref. [1].

II. MOLECULAR-DYNAMICS ALGORITHM

A. Equations of motion

An equilibrium-molecular-dynamics (EMD) simulation
in the canonical ensemble (constant NVT) for a rigid
heteronuclear diatomic fluid (a fluid made up of
heteronuclear diatomic molecules with frozen vibrational
degrees of freedom) involves the solution for both atoms
(1 and 2) of each molecule (p =1,2, ..., P) the classical
trajectory equations modified by Gauss’s principle of
least constraints [3-5]:

vy,

=&+N1 +B,, —2=v, , (1a)
dt m, p " Pp dt P
dva, _ Fop dry,
at m, e Be g TVaro (16)

where ¢ is time, m the atom mass, and r, v, F, N, and B
are the position, velocity, intermolecular force, Nosé-
Hoover (NH) thermostat, and bond constraint vectors,
respectively. It should be noted that the bond constraint
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forces sum to zero for a molecule. The RATTLE algo-
rithm [2] was used to integrate Eqs. (1).

B. Intermolecular force vector

The intermolecular force vector acting on the ith atom
is the sum of all potential induced forces that arise from
the interaction of that atom with all surrounding atoms
except that of the same molecule:

N,
F=—3 V’;,ﬂff , (2)
j=1
where #;; is the pair potential function for the atom pair
(ij), ri is the distance between the two atoms, and the
gradient operator is defined as

d . d . . d
F’w*;ﬁ%ﬁ;};ruz : (3)

ij ij

So as to reduce the computational effort associated with
force calculation, a modified pair potential function was
used —the unmodified pair potential ,; and its gradient
were forced to zero at a cutoff radius r,, determined such
that the number of particles within the radius satisfies
N, <<N:

du;;
1y _ . 1
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where N is the total number of particles within the sys-
tem. The unmodified pair potentials for the fluid-fluid
and fluid-substrate interactions were of the 12-6
Lennard-Jones (LJ) form

6
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where € and o are the pair potential energy and length
parameters, respectively.
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C. Nosé-Hoover thermostat

The NH thermostat vector for each of the atoms
(i =1,2) of a diatomic molecule are given by [3,4]

N, ==&, , (6a)
1| 2K

= | ——1 (6b)
g T2 NDOFkb T

where §{ is the NH Lagrangian multiplier, K the total
kinetic energy of the system of molecules, Npgp the total
number of degrees of freedom (DOF) in the system, k,
the Boltzmann constant, T the desired temperature and 7
the thermostat characteristic time which controls the
efficiency of the thermostatting mechanism [3]. The total
kinetic energy may be estimated from the atom velocities
by

N
K=13 mu}? (7)

while the total number of DOF for a system of M rigid
diatomic molecules is 2M —4.

D. Bond constraint

The bond constraint vector for a molecule is given by

(2]
B, =X, (8)

where A is the bond constraint Lagrangian multiplier and
Ty, is the bond length vector

I, =T, 9)

p p Fip -

The bond constraint Lagrangian multiplier is selected for
each molecule such that the bond length constraint and
its time derivative are satisfied [2]:

r%z,p“d%zzo , (10a)

T, T,=0, (10b)

where d |, is the desired bond length.

III. SIMULATIONS
A. Conditions and scheme

All simulations involved a heteronuclear diatomic mol-
ecule (CO-like: 0,=0.335 nm, ¢g,/k,=51.2 K,
m,;=1.99265X 10" 2 kg; 0,=0.295 nm, &,/k, =61.6 K,
m,=2.65686Xx 10" ¢ kg, d,, =0.1128 nm where atoms 1
and 2 are C and O, respectively (see p. 21 of Ref. [6]),
while the substrate was graphitelike (o, =0.384 nm and
€,/k,=58.3 K) with a stacking spacing of 0.3354 nm
and of hexagonal form [7]. The potential parameters for
interaction between unlike atoms were determined using
the Lorentz-Berthelot rules (see p. 21 of Ref. [6]) for
i#j=1,2,ands,

(11a)
g.:(g.e‘)l/z_ (11b)

The pore system was generated by the method de-
scribed in [1] where the unit cells were once again 1.2762
by 0.9839 by 1.3436 nm’® in size. It should be noted that
because the unit cells are of one size, the present method
of pore system generation results in the average pore size
increasing with porosity. This in effect means the
diffusion process will develop from Knudsen-like (where
fluid-substrate interactions will dominate) to ordinarylike
(where fluid-fluid interactions will dominate) as the
porosity increases. Future developments aim to remove
this restriction so as to give control over the diffusion re-
gime to be simulated and allow the investigation of poros-
ity and pore size effects independently.

All simulations reported here were performed in re-
duced units based upon the average of the fluid atom pa-
rameters (see Appendix B of Ref. [6]). Examples of re-
duced quantities include temperature T*=Tk, /¢, time
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*=toV'm /g, and distance r*=r/o. The cutoff radius
for both fluid-fluid and fluid-substrate interactions was
2.5 in reduced units.

Two realizations were done for each of the porosities
0.312, 0.4, 0.6, and 0.8 at each of the temperatures, 100,
200, 300, 500, 700, 900, 1100, 1300, and 1500 K while
further simulations were carried out at the porosities of
0.95 and 0.99 for 900 K. The limited number of realiza-
tions and the approximate nature of the potential param-
eters mean that only a qualitative discussion of the results
will be possible.

The following procedure was repeated for each simula-
tion:

(a) Following Ref. [1], a completely random pore space
was generated with the desired porosity.

(b) The fluid molecules (number of molecules varied
from 30 to 100) were distributed randomly throughout
the percolating pore space. The geometric center of each
molecule was placed in the center of the allocated void
unit cell to avoid large initial forces which could cause
problems with the time 1ntegrat10n scheme.

(c) Each atom was assigned a velocity such that the
square of its magnitude was distributed uniformly around
the value which would give the desired ensemble temper-
ature. The direction of the velocity vector and the orien-
tation of the molecules were randomly generated under
the constraint (10b).

(d) The trajectories were first advanced approximately
30000 times steps to ensure that equilibrium had been
reached. This was followed by the production run during
which the mean-square-displacement and velocity-
autocorrelation functions were accumulated. The time
step used for all simulations was 0.005 ps and production
runs were 370 000 times steps long.

B. Results generated

The results generated during each simulation included
the mean-square displacement of the molecular center of
mass

RUAOD={[rlty+7,)—1(tx)]?) , (12)

and the velocity-autocorrelation function (VACF) of the

molecular center of mass
¢(t)_(v(t0+7'3 to)) (13)

The equilibrium ensemble averages, which were aver-
aged over M =20000 time steps for each simulation, are
(see p. 185 of Ref. [6]):

([r(to+74)—1(ts)]*)

r,(t,)1*,  (14)

M P
(v(t0+TB)-v(t0))“ML§ § V(Lo +7p) v, (2g;)

(15)

where ty; (j=1,..., M) represents the jth time origin
and 7,4 (set equal to 100 time steps) and 7 (set equal to

10 time steps) are the time steps between successive quan-
tities used in the calculation of the mean-square-
displacement and velocity-autocorrelation functions, re-
spectively. The diffusion coefficient D, was estimated us-
ing (see p. 60 of Ref. [6]),

tu
Dz%fo Yt (16)

where t, is the length of the generated VACF. The
diffusion coefficients may be overestimated to some de-
gree by this equation at $=0.312 and $=0.4 due to long
negative tails.

IV. RESULTS AND DISCUSSION

A. Mean-square dispiacement function

The motion of a particle with velocity v and mass m
within a system of interacting particles may be modeled

by the non-Markovian Langevin equation (see p. 31 of
Ref. [8])

dv t
—_— = — (
dt f —!
where the integral term represents the non-Markovian
friction forces on the particle due to its motion relative to
the rest of the fluid and R(#) is a random force that arises

from the particle’s interaction with it surroundings. If
the friction kernel y(z —t") is assumed to scale as

t—t'W(thdt=-LR() | 17)
m

y(t—t')~6(t—1¢"), (18)

where 6(¢ —¢’) is the Dirac § function, then Eq. (17) may
be simplified to the linear Langevin equation

dv _ 1
i yv(t)+ - R(z) . (19)

If we assume that the random force is short lived and
its average is zero, then the mean-square-displacement
function scales as (see p. 455 of Ref. [9])

t? for t—0,
t fort—sow ,

(20a)
(20b)

R2(t)~

where the short- and long-time limiting behaviors may be
classified as Newtonian dynamics and normal diffusion,
respectively. Transition between the two regimes is
caused by particle-particle interactions. It has been
shown that for anomalous diffusion, the mean-square dis-
placement scales as [10,11]

R*(t)~t2, 21)

where « is less than 1 in the long-time limit.

The variation of a at small times with temperature for
different porosities is illustrated in Fig. 1(a)—the values
of a were derived from the straight-line fit of the log-log
plots of the mean-square-displacement function at small
times and the confidence bands account for errors associ-
ated with the fitting process only. Figure 1(a) indicates
that in the short-time limit, the a exponent increases with
temperature towards a limiting value of a~1.65 and 1.4
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for $=0.8 and 0.6, respectively, while it increases to a
peak at T=500 K for ¢=0.4 (a=1.23) and ¢=0.6
(a=1.18). It is clear that the assumptions used in devel-
oping the limiting behavior (20a) may not be valid for
particle motion within our porous medium. The short-
time behavior seen here does not correspond with that re-
ported by El Amrani and Kolb [12], who do get the limit-
ing behavior of (20a)—this difference may be due to pore
size effects.

The variation of a at large times with temperature for
different porosities is illustrated by the solid lines in Fig.
1(b)—the values of a were derived from the straight-line
fit of the log-log plots of the mean-square-displacement
function in the neighborhood of t* =~80. Figure 1(b) indi-
cates that a in the long-time limit increases towards unity
with porosity for temperatures T =200 K and with tem-
perature for ¢=0.6 and 0.8. Further, the a exponent in-
creases with temperature to the limiting values of a=0.6
for $=0.312 and a=0.75 for $=0.4. These limiting
values are greater than that for a random walker on the
sample spanning cluster at the percolation threshold [10]
[shown as dashed line a=0.57 in Fig. 1(b)]. Some sense
of these behaviors may be made if we consider the funda-
mental basis of anomalous diffusion. The correlation
length of a percolation system is the distance a particle
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FIG. 1. (a) Variation of a at small times with temperature
(95% confidence bands shown). X, ¢=0.312; A, ¢=0.4;
+, $=0.6; #, $=0.8. (b) Variation of a at large times with
temperature. X, ¢=0.312; A, ¢=0.4; +, ¢=0.6; ‘, ¢=0.8;
@, 6=0. [10]. (c). Derivative  of  log-mean-square-
displacement with respect to log time vs reduced time.
X, $=0.312, A, $=0.4; +, $=0.6; ¢, $=0.8.

must move from its origin before it “forgets™ its initial
state—this distance dictates the length of memory of a
diffusion process. Near the percolation threshold ¢, the
correlation length of a percolation system of porosity ¢
scales according to

E~lo—o. 7", (22)

where v is a positive universal scaling exponent [13].
From Eq. (22) it may be seen that, for a given tempera-
ture, memory (i.e., time taken for a particle to “forget”
its initial state) increases as the porosity decreases to-
wards the percolation threshold and, for a given porosity,
memory decreases as the temperature increases (because
as temperature increases, a particle will take less time on
average to exceed the correlation length). This would ac-
count for the increase of a at large times with tempera-
ture for ¢=0.6 and 0.8 and with porosity for 7 =200 K.
The behavior of a in the long-time limit at $=0.312 and
0.4 shall be discussed below.

The transition from short- to long-time behavior for
the different porosities at 7=>500 K is clearly shown in
Fig. 1(c)—this plot will display horizontal straight-line
behavior corresponding to a when the mean-square dis-
placement is governed by Eq. (21). Based upon the above
discussion, one would expect, for ¢ > ¢., the a exponent
to change from 1 <a <2 at short times to a <1 (anoma-
lous diffusion) at intermediate times and finally to a=1
(normal diffusion) at long times. It appears as if this se-
quence of transitions does occur for $=0.6 in the time
span shown where the process passes from anomalous
diffusion in the range 10 <¢* <20 to normal diffusion for
1*250. The short-to-intermediate-time behavior for
¢=0.312 and 0.4 are similar to that of $=0.6. However,
the point of transition from anomalous to normal
diffusion for these lower porosities is much greater than
that for ¢=0.6—the transition does not occur in the
time span shown here. This type of behavior is not dis-
similar to that reported by Lowe and Masters [14] for a
Lorentz system where they found that the time of onset
of asymptotic behavior shifted rapidly to longer times as
the percolation threshold was approached. The process
for $=0.8 is very different from that of the other porosi-
ties where it makes a transition directly from a>1 at
short times to normal diffusion at long times without
passing through an anomalous-diffusion regime. The
above transition behaviors are seen at all temperatures
T >200 K where the time taken to reach the Gaussian
limit at ¢=0.8 decreases with increasing temperature
and the period of anomalous diffusion at ¢ =0.6 becomes
smaller with increasing temperature. The behavior of the
a exponent for all porosities at 7=100 K may be caused
by the nearness of 7=100 K to the gas-liquid transition
temperature for carbon monoxide (allowing for the fact
that our fluid is only CO-like)—the mean-square-
displacement function shown in Fig. 2(a) for T=100 K
indicates a highly immobile fluid relative to that at
T =200 K shown in Fig. 2(b).

B. Velocity-autocorrelation function

The velocity-autocorrelation functions for all porosities
are plotted for 7 <300 K and 900 K in Figs. 3(a)-3(d).
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FIG. 2. (a) Reduced mean-square-displacement function for T=100 K. X, ¢=0.312; A, ¢=0.4; +, $=0.6; ¢, $=0.8. (b) Re-
duced mean-square-displacement function for T=200 K. X, ¢=0.312; A, ¢=0.4; +, ¢=0.6; 4, 4=0.8.
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FIG. 3. (a) Reduced velocity-autocorrelation function vs reduced time for 7=100 K. X, ¢=0.312; A, ¢=0.4; +, ¢$=0.6;
L 2 $=0.8. (b) Reduced velocity-autocorrelation function vs reduced time for T=200 K. X, ¢=0.312; A, $=0.4;, +, $=0.6;
¢, $=0.8. (c) Reduced velocity-autocorrelation function vs reduced time for T=300 K. X, $=0.312; A, ¢=0.4; +, $=0.6;
Q, ¢=0.8. (d) Reduced velocity-autocorrelation function vs reduced time for T=900 K. X, $=0.312; A, $=0.4; +, ¢$=0.6;
¢, $=0.8;@, $=0.95; W, $=0.99.
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The VACF’s for T <200 K display strong oscillatory
behavior —the source of these oscillations is discussed in
Biggs and Agarwal [1]. For 77=300 K and ¢ =0.6, the
VACF’s display long negative tails. Both the oscillatory
and long-time tail behaviors have been seen in Lorentz
gas simulation studies [15,16]. The VACF’s for T = 300
K and ¢=>0.8 display gaslike behaviors while liquidlike
characteristics may be seen at all other porosities and
temperatures 7 =200 K.

C. Effective diffusion coefficient

The log of the reduced effective diffusion coefficient is
illustrated for each temperature against porosity
(0.312<¢ <0.8) in Fig. 4(a). This plot indicates that the
effective diffusion coefficient at a given temperature
(T =200 K) for 0.312<¢ <0.8 varies as

D,=keP | (23)

where the variations of 8 and k; with temperature are
shown in Figs. 4(b) and 4(c), respectively. The preex-
ponential factor appears to be a weak function of temper-
ature, while it is unclear if B varies with temperature at
all due to the large error bands; these errors could be re-
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FIG. 4. (a) Log of reduced effective diffusion coefficient vs
porosity for each temperature. X, T=200 K; A, T=300 K;
+, T=500 K; 4, T=700 K; ®, T=1100 K; W, 7=1500 K.
(b) Variation of the B exponent with temperature (95%
confidence bands shown). (c) Variation of the k, factor with
temperature (95% confidence bands shown).

duced if more results at different porosities were generat-
ed so as to increase the number of degrees of freedom
used in generating confidence intervals.

The log of the reduced effective diffusion coefficient is
shown for each porosity against inverse temperature in
Fig. 5(a). This plot indicates that the effective diffusion
coefficient at a given porosity (0.312=<¢=<0.8) for
T 2200 K varies as

D,=k,e™'T (24)

where the variations of A and In(k,) with porosity are
shown in Figs. 5(b) and 5(c), respectively. The preex-
ponential factor appears to vary exponentially with
porosity and thus verifies the form of Eq. (23). The ex-
ponential factor A appears to decrease as the porosity in-
creases from ¢=0.312 to 0.6. However, it is unclear if A
reaches a plateau or increases with porosity for ¢ >0.6.
This variation of the effective diffusion coefficient with
temperature is similar to that of liquids in the bulk phase
(see p. 587 of Ref. [17]) and is in marked contrast to the
T3/2-T? variation predicted from kinetic theory for
gases in the bulk phase (see p. 564 of Ref [17]). This

brings into doubt the validity of the much used
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FIG. 6. Normalized effective diffusion coefficient vs porosity
for T=900 K.

temperature-independent tortuosity (see, for example,
Ref. [18]) that relates the diffusion coefficient of a gas in
the bulk phase to that within a porous media. This result
is supported by the work of Bhatia [19], who demonstrat-
ed that the tortuosity may be dependent upon tempera-
ture, pressure, and the diffusing gases.

The variation of the normalized effective diffusion
coefficient, ¢, =D, /D, where D is assumed to be the
diffusion coefficient for CO in the bulk phase, with poros-
ity (0.312<¢=0.99) for T =900 K is shown in Fig. 6.
Allowing for the fact that the fluid used in the simula-
tions was only CO-like, Fig. 6 shows that even at
¢=0.99, the calculated effective diffusion coefficient is
still five times smaller than that in the bulk phase. Simi-
lar behavior has been reported in Reyes and Jensen [20].

V. SUMMARY AND CONCLUSIONS

The results, once again, indicate that there are clear
differences between mass diffusion within porous media
and mass diffusion in the bulk phase. In the short-time
limit, the mean-square-displacement exponent is less than

2 but greater than 1 for all conditions simulated except at
T=100 K, while in the long-time limit, the exponent is
less than 1 for low porosities at all temperatures and for
all porosities up to 77=300 K. In all cases except
T =100 K, the mean-square-displacement exponent in
the long-time limit exceeded that of a random walker on
the sample spanning cluster at the percolation
threshold—the behavior at 7=100 K could be caused by
the nearness of this temperature to the gas-liquid transi-
tion point of the fluid simulated. The VACF’s display os-
cillatory components and long negative tails at the lower
temperatures and long negative tails at all temperatures
for the lower porosities. The qualitative behaviors seen
here are similar to those reported in Lorentz gas simula-
tion studies [14-16].

The effective diffusion coefficient appears to vary ex-
ponentially with porosity and inverse temperature. The
temperature variation is similar to that of liquid in the
bulk phase and corresponds to the liquidlike behavior
seen in the VACF’s. The liquid-type variation with
temperature means that the use of a temperature-
independent tortuosity factor that relates the diffusion
coefficient of a gas in the bulk phase to that within a
porous media may be insufficient.

The present method of pore system generation means
that the average pore size increases with porosity. This is
undesirable and hence the method detailed here is
presently being extended to allow independent control
over both pore size and porosity. Future papers will ad-
dress this issue and the effects of fluid-substrate energy
exchange and reaction.
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